

TEST REPORT

Reference No. : WTF19F07043797X1C

Applicant: 1 Mid Ocean Brands B.V.

Address : 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon,

Hong Kong

Manufacturer: 104438

Sample Name: Lunch box in PP

Model No. : MO9759, MO8517

Test Requested.....: In accordance with Council of Europe Resolution AP(2004)5, (EU) No

10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752, (EU)

2018/213, (EU) 2019/37 and Regulation (EC) No 1935/2004.

Test Conclusion.....: Pass (Please refer to next pages for details)

Date of Receipt sample ... : 2019-07-01

Date of Test : 2019-07-01 to 2019-07-23

Date of Issue : 2019-11-07

Test Result: Please refer to next page (s)

Remark : 1) Selected test(s) as requested by applicant.

2) This report is based on Waltek test report WTF19F07043797C for

revising, and replaced report WTF19F07043797C.

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Compiled by:

Abby.Zhou / Project Engineer

SERVICE Approved by:

no.Zhang / Lab Manager

Reference No.: WTF19F07043797X1C Page 2 of 10

Test Results:

1. Overall Migration Test

Food Simulant	Test Condition	Result (mg/kg) No.1	MDL(mg/kg)	Limit (mg/kg)
3% Acetic Acid	20°C for 24 hours	ND ND	20	60
10% Ethanol	20°C for 24 hours	ND CO	20 000	mr 60 m
95% Ethanol	20°C for 24 hours	35	20	Citer 60 th Marie
Isooctane	20°C for 6 hours	ND	20	60

Note:

- 1. Test method: With reference to BS EN 1186-1: 2002, BS EN 1186-3: 2002, BS EN 1186-9: 2002 and BS EN1186-14: 2002.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. "°C" = Celsius degree
- 4. MDL= Method Detection Limit
- 5. ND = Not Detected, less than MDL
- 6. The specification was quoted from Council of Europe Resolution AP (2004)5.

Food Simulant	Test Condition	Result (mg/dm²)	- MDL (mg/dm²) Limit (mg/dm²		
Food Simulant	Test Condition	No.2	MDE (Mg/dm)	Limit (mg/dm/)	
3% Acetic Acid	20°C for 24 hours	ND	The Wille	white 10 cm	
10% Ethanol	20°C for 24 hours	ND	3	10 1	
95% Ethanol	20°C for 24 hours	ND ND	m 3 m	10	
Isooctane	20°C for 6 hours	ND	3 JF W	10	

- 1. Test method: With reference to BS EN 1186-1: 2002, BS EN 1186-3: 2002, BS EN 1186-9: 2002 and BS EN1186-14: 2002.
- 2. "mg/dm2" = milligram per square decimetre
- 3. "°C" = Celsius degree
- 4. MDL= Method Detection Limit
- 5. ND = Not Detected, less than MDL
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2019/37.

Reference No.: WTF19F07043797X1C Page 3 of 10

2. Specific Migration of Bisphenol A

RUTER TOURS OF WA	The William	Result	(mg/kg)	it it	MDI (man/ka)	Limit (malks)
Test Item	No.1	No.2	No.3	No.4	MDL (mg/kg)	Limit (mg/kg)
Migration of Bisphenol A	ND	ND	L ND	ND	0.01	0.05

Note:

- 1. Test Method: With reference to CEN/TS 13130-13-2005, sample preparation in 3% acetic acid at 20°C for 24 hours, analysis was performed by LC-MS-MS.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. MDL= Method Detection Limit
- 4. ND = Not Detected, less than MDL
- 5. The specification was quoted from regulation (EU) No 10/2011 and its amendments (EU) 2018/213.

3. Bisphenol A Content*

Toot Itom	Result	(mg/kg)	MDL (ma/ka)	Limit (ma/ka)
Test Item	No.1	No.2	MDL (mg/kg)	Limit (mg/kg)
Bisphenol A	ND WILL	ND ND	0.1	Not Detected (<0.1mg/kg)

- 1. Test Method: With reference to EPA3550C:2007, analysis was performed by LC-MS-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. MDL= Method Detection Limit
- 4. ND = Not Detected, less than MDL
- 5. The specification was quoted from Law No 2012-1442
- 6. The testing item marked with '*' does not been accredited by CNAS.

Reference No.: WTF19F07043797X1C Page 4 of 10

4. Specific Migration of heavy metal (Nickel, Aluminium, Barium, Cobalt, Copper, Iron, Lithium, Manganese, Zinc)

Tours of	Result (mg/kg)	MADL (man/lan)	Limit (man/lan)	
Test Items	No.2	MDL (mg/kg)	Limit (mg/kg)	
Specific migration of Nickel	ND W	0.01	0.02	
Specific migration of Aluminium	ND -	0.1	wer 1 m	
Specific migration of Barium	ND	0.1	NITER MITER	
Specific migration of Cobalt	ND ND	0.01	0.05	
Specific migration of Copper	ND	0.1 M	nt	
Specific migration of Iron	ND	0.1	48	
Specific migration of Lithium	ND	0.01	0.6	
Specific migration of Manganese	ND ND	0.01	0.6	
Specific migration of Zinc	ND	0.1	J. 15 5 5 5 1 1 1 1	

Note:

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 20°C for 24 hours, analysis was performed by ICP-OES.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. MDL= Method Detection Limit
- 4. ND = Not Detected, less than MDL
- 5. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416 and (EU)2017/752.

5. Specific Migration of Primary Aromatic Amines

	Taylor Taylor	Result (mg/kg)	MDL (mg/kg)	Limit (mg/kg)
2	Test Item	No.2	MDL (mg/kg)	
1	Migration of Primary aromatic amines	ND	0.01	Not Detected (<0.01mg/kg)

- 1. Test Method: With reference to § 64 LFGB L No. 00.00-6, analysis was performed by UV-visible Spectrometer.
- 2. Test Condition and simulant: 3% acetic acid at 20°C for 24 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. MDL= Method Detection Limit
- 5. ND = Not Detected, less than MDL
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416 and (EU) 2017/752.

Reference No.: WTF19F07043797X1C Page 5 of 10

6. Council of Europe Resolution CM/Res(2013)9-Specific Migration of Heavy Metal

Took Itoms	1st+2nd Migration (mg/kg)	MDL (ma/ka)	Limit (mg/kg)	
Test Items	No.5	MDL (mg/kg) Limit (n		
Aluminium (Al)	IN ND	0.2	35	
Antimony (Sb)	THE NOTE OF WALLE	0.02	0.28	
Chromium (Cr)	0.11	0.04	1.75	
Cobalt (Co)	is unit wind unit will	0.02	0.14	
Copper (Cu)	ND ND	0.2	28	
Iron (Fe)	3.0	0.4	280	
Manganese (Mn)	THE THE NOTE WHILE	0.2	12.6	
Molybdenum (Mo)	n ND	0.02	0.84	
Nickel (Ni)	0.05	0.02	0.98	
Silver (Ag)	ND	0.02	0.56	
Tin (Sn)	Int ND IN IN	0.2	700	
Vanadium (V)	ND	0.01	0.07	
Zinc (Zn)	ND	0.2	35	
Arsenic (As)	ND ND	0.002	0.014	
Barium (Ba)	ND	0.2	8.4	
Beryllium (Be)	IF ND ND	0.01	0.07	
Cadmium (Cd)	E TEND MITTER INTER	0.002	0.035	
Lead (Pb)	0.02	0.01	0.07	
Lithium (Li)	ND week	0.01	0.336	
Mercury (Hg)	ND	0.002	0.021	
Thallium (TI)	ND ND	0.0002	0.0007	
Magnesium (Mg)	ND	0.2	mr -m	
Titanium (Ti)	un' un'ND	0.02	t LIEK SLIEK	

Reference No.: WTF19F07043797X1C Page 6 of 10

Test Items	3rd Migration (mg/kg)	MDI (malka)	Limit (ma/ka)
restitems	No.5	MDL (mg/kg)	Limit (mg/kg)
Aluminium (Al)	TO NOTE OF	0.1	5_
Antimony (Sb)	ND	0.01	0.04
Chromium (Cr)	ND ND	0.02	0.25
Cobalt (Co)	ND ND	0.01	0.02
Copper (Cu)	An An ND An		4 (4)
Iron (Fe)	(0.3, 100, 100)	0.2	40
Manganese (Mn)	ND	0.1 th	1.8
Molybdenum (Mo)	ND	0.01	0.12
Nickel (Ni)	ND	0.01	0.14
Silver (Ag)	ND	0.01	0.08
Tin (Sn)	ND STORY	0.1	100
Vanadium (V)	ND	0.005	0.01
Zinc (Zn)	ND ND	0.1	5 -
Arsenic (As)	ND	0.001	0.002
Barium (Ba)	ND	0.1	1.2
Beryllium (Be)	ND ND	0.005	0.01
Cadmium (Cd)	ND ND	0.001	0.005
Lead (Pb)	ND NO NO	0.005	0.01
Lithium (Li)	ND -	0.005	0.048
Mercury (Hg)	ND ND	0.001	0.003
Thallium (TI)	L ND	0.0001	0.0001
Magnesium (Mg)	ND	0.1	TEX SITEX- DITEX OF
Titanium (Ti)	ND ND	0.01	24, -2

- 1. Test Method: With reference to BS EN 13130-1: 2004, analysis was performed by ICP-OES and ICP-MS
- 2. Test Condition and simulant: Sample(s) were migrated with 5g/L citric acid at 20°C for 24 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. MDL = Method Detection Limit
- 5. ND = Not Detected, less than MDL
- 6. "--" = Not regulated
- 7. The specification was quoted from Technical Guide on Metals and alloys used in food contact materials of Council of Europe Resolution CM/Res(2013)9.

Reference No.: WTF19F07043797X1C

W

Sample Photo:

Reference No.: WTF19F07043797X1C Page 9 of 10

Photograph of parts tested:

No.	Photo of testing part	Parts Description	Client Claimed Material
LIEK 1 W	2 5 1 10 1 1 1 1 1 5 1 1 1 1 2 2 3 2 3 2 3 2 3 3 N R N N 3 3 1	Translucent silicone rubber	Silicone rubber
trek whi 2 whit hitek	3. + 5. + + + 10 + + + + + 15 + + + + + 20 + + + + + 25 + + + + + 30 + + + + + 35 + + + + + + + + + + + + +	White plastic	MILITER WALTER WALTER MILITER WALTER WALTER WALTER WALTER WALTER WALTER WALTER
3 The	5 - 10 n x p 115 n p 10 20 n x 225 n x 230 n n n 135 n	Black plastic	unifer whitek wh
mitik 4 1 1 1	1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	White plastic	TEX WHITEK WHITE

Waltek Services (Foshan) Co., Ltd. http://www.waltek.com.cn

Reference No.: WTF19F07043797X1C Page 10 of 10

No.	Photo of testing part	Parts Description	Client Claimed Material
INLIEK N		MULTER MILLER WALTE	Whitek whitek whitek
5		Silvery metal	Stainless steel
		TEX WILLEY WALTER W	LIER WHITEK WHITEK WHI
MILITER	**************************************	ex outex outex out	ex writer writer write

===== End of Report =====

