

TEST REPORT

Report No	WTF19F09067849C
Report No	 W 1 F 19 F U 9 U 0 7 0 4 9 C

Mid Ocean Brands B.V. Applicant:

Address: 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon,

Hong Kong

Manufacturer 109979

Sample Name: Bamboo Charging Cable

Model No.: : MO9888

Sample Receiving Date 2019-09-27

Testing Period.....: 2019-09-27 to 2019-10-10

Date of Issue 2019-10-10

Test Result Please refer to next page (s)

Remarks:

The results shown in this test report refer only to the sample(s) tested; this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.

Prepared By:

Waltek Services (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China Tel:+86-757-23811398

Fax:+86-757-23811381

E-mail:info@waltek.com.cn

SERVICE Approved by:

Compiled by:

Humour.Wu/ Project Engineer

g.Liang/ Lab Manager

Report No.: WTF19F09067849C Page 2 of 12

Test Requested.....: In accordance with the RoHS Directive 2011/65/EU and its

amendment (EU) No. 2015/863.

> With Reference to IEC 62321-3-1:2013, screening - Lead, mercury, cadmium, total chromium and total bromine by X-ray fluorescence spectrometry

3) With reference to IEC 62321-4:2013+AMD1:2017 CSV, determination of Mercury by ICP-OES

4) With reference to IEC 62321-5:2013, determination of Lead and Cadmium by ICP-OES

5) With reference to IEC 62321-7-2: 2017 and IEC 62321-7-1: 2015, determination of Hexavalent Chromium by UV-Vis

6) With reference to IEC 62321-6:2015, determination of PBBs and PBDEs by GC-MS

7) With reference to IEC 62321-8:2017, determination of Phthalates content by GC-MS.

Test Conclusion.....: Pass (Based on the performed tests on the submitted samples, the

results comply with the RoHS Directive 2011/65/EU and its amendment (EU) No. 2015/863)

Ex un tex white and white whit

Test Results:

1. Lead, Mercury, Cadmium, Hexavalent Chromium, PBBs and PBDEs

Part	WILL MILLER WHILE MINIT AND		Res	ult of 2	KRF	Result of Wet Chemical	
No.	Part Description	Cd	Pb	Hg	Cr	Br	Testing (mg/kg)
1 5	Beige wooden shell	BL	BL	BL	BL	BL	white was white
2 11	Silvery metal chain	BL	BL	BL	BL	BL	Intie Market M
3	Silvery metal ring	BL	BL	BL	BL	BL	NA NA
4	White plastic jacket of USB plug	BL	BL	BL	BL	BL	t milet nA mile
5	Silvery metal shell of USB plug	BL	BL	BL	BL	BL	NA INTER
6.0	White plastic sheet of USB plug	BL	BL	BL	BL	BL	Lifet Inti NA
7 6	Silvery-golden metal pin of USB plug	BL	BL	BL	BL	BL	NA N
8	Solder of USB plug	BL	BL	BL	BL	BL	NA NA
9	White plastic jacket of plug	BL	BL	BL	BL	IN	PBBs : ND PBDEs : ND
10	Dark grey plastic sheet of plug	BL	BL	BL	BL	BL	NA
11	Silvery metal sheet of plug	BL	BL	BL	BL	BL	NA
12	Silvery metal pin of plug	BL	BL	BL	BL	BL	NA
13	White plastic sheet of plug	BL	BL	BL	BL	BL	NA NA
14	Silvery metal shell of plug	BL	BL	BL	BL	BL	NA NA
15	Green PCB of plug	BL	BL	BL	BL	IN	PBBs : ND PBDEs : ND
16	Solder of plug	BL	BL	BL	BL	BL	NA wife
17	Chip resistor of plug	BL	BL	BL	BL	BL	united in NA intelligence
18	White plastic jacket of plug	BL	BL	BL	BL	BL	Litt MA LIFE IN
19	Silvery metal shell of plug	BL	BL	BL	BL	BL	at At NACT ST

Part			Res	ult of	XRF	Result of Wet Chemical	
No.	Part Description	Cd	Pb	Hg	Cr	Br	Testing (mg/kg)
20	White plastic sheet of plug	BL	BL	BL	BL	BL	NA
21	Silvery-golden metal pin of plug	BL	BL	BL	BL	BL	NA NA
22	Solder of plug	BL	BL	BL	BL	BL	NA NA
23	Green PCB of plug	BL	BL	BL	BL	IN	PBBs : ND PBDEs : ND
24	Chip IC of plug	BL	BL	BL	BL	IN	PBBs : ND PBDEs : ND
25	Chip audion of plug	BL	BL	BL	BL	BL	NA NA
26	White fibrous wire	BL	BL	BL	BL	BL	NA LITE OF
27	Coppery metal wire	BL	BL	BL	BL	BL	NA NA
28	Red metal wire	BL	BL	BL	BL	BL	NA MATER
29	Solder	BL	BL	BL	BL	BL	NA NA
30	White plastic wire covering	BL	BL	BL	BL	BL	NA NA

Remark:

(1) Results are obtained by EDXRF for primary screening, and further chemical testing by ICP (for Cd, Pb, Hg), UV-VIS (for Cr⁶⁺) and GC-MS (for PBBs, PBDEs) is recommended to be performed, if the concentration exceeds the below warning value according to IEC 62321-3-1: 2013 (unit: mg/kg)

Element	Polymer	Metal	Composite Materials
Cd	BL ≤ (70-3σ) < IN < (130+3σ) ≤ OL	BL ≤ (70-3σ) < IN < (130+3σ) ≤ OL	LOD < IN < (150+3σ) ≤ OL
Pb	$BL \le (700-3\sigma) < IN < (1300+3\sigma) \le OL$	$BL \le (700-3\sigma) < IN < (1300+3\sigma) \le OL$	BL ≤ (500-3σ) < IN < (1500+3σ) ≤ OL
Hg	BL ≤ $(700-3\sigma)$ < IN < $(1300+3\sigma)$ ≤ OL	$BL \le (700-3\sigma) < IN < (1300+3\sigma) \le OL$	BL ≤ (500-3σ) < IN < (1500+3σ) ≤ OL
Cr	BL ≤ (700-3σ) < IN	BL ≤ (700-3σ) <in< td=""><td>BL ≤ (500-3σ) < IN</td></in<>	BL ≤ (500-3σ) < IN
Br	BL ≤ (300-3σ) < IN	- alter miter anite was	BL ≤ (250-3σ) < IN

BL= Below Limit

OL= Over Limit

LOD = Limit of Detection

-- = Not Regulated

- (2) "IN" expresses the inconclusive region, and further chemical testing to confirm whether it complies with the requirement of RoHS Directive.
- (3) The XRF screening test for RoHS elements the reading may be different to the actual content in the sample be of non-uniformity composition.
- (4) mg / kg =milligram per kilogram=ppm, μg/cm²= Micrograms per square centimetre.
- (5) ND = Not Detected, less than the value of Method Detection Limit.
- (6) NA = Not Applicable, as the XRF screening test result was below the limit or as the XRF screening directly determine that test result was over the limit, it was not need to conduct the wet chemical testing.
- (7) MDL= Method Detection Limit in wet chemical test.

Test Items	Pb	Cd	Hg	Cı	r ⁶⁺	PBB	PBDE	
Units	mg/kg	mg/kg	mg/kg	mg/kg	μg/cm ²	mg/kg	mg/kg	
MDL	2	2	2	2	0.1	5	5	l

The MDL for single compound of PBBs and PBDEs is 5mg/kg, MDL of Cr⁶⁺ for polymer and composite sample is 2mg/kg and MDL of Cr⁶⁺ for metal sample is 0.1µg/cm².

(8) RoHS Requirement

Restricted Substances	Limits
Cadmium (Cd)	0.01% (100 mg/kg)
Lead (Pb)	0.1% (1000 mg/kg)
Mercury (Hg)	0.1% (1000 mg/kg)
Chromium (VI) (Cr ⁶⁺)	0.1% (1000 mg/kg)
Polybrominated Biphenyls (PBBs)	0.1% (1000 mg/kg)
Polybrominated Diphenyl Ethers (PBDEs)	0.1% (1000 mg/kg)

(9) According to IEC 62321-7-1:2015, determined of Cr⁶⁺ on metal sample by boiling water extraction test method, and result is shown as Positive/Negative.

Boiling water extraction:

Negative = Absence of Cr^{6+} coating, the detected concentration in boiling water extraction solution is less than $0.10ug/cm^2$.

Positive = Presence of Cr⁶⁺ coating, the detected concentration in boiling water extraction solution is greater than 0.13ug/cm².

Information on storage conditions and production date of the tested sample is unavailable and thus Cr6+

results represent status of the sample at the time of testing.

(10) Abbreviation:

"Pb" denotes Lead, "Cd" denotes Cadmium, "Hg" denotes Mercury, "Cr" denotes Chromium, "Cr (VI)" denotes Hexavalent Chromium, "Br" denotes Bromine, "PBBs" denotes Total Polybrominated Biphenyls, "PBDEs" denotes Total Polybrominated Diphenyl Ethers.

Page 6 of 12

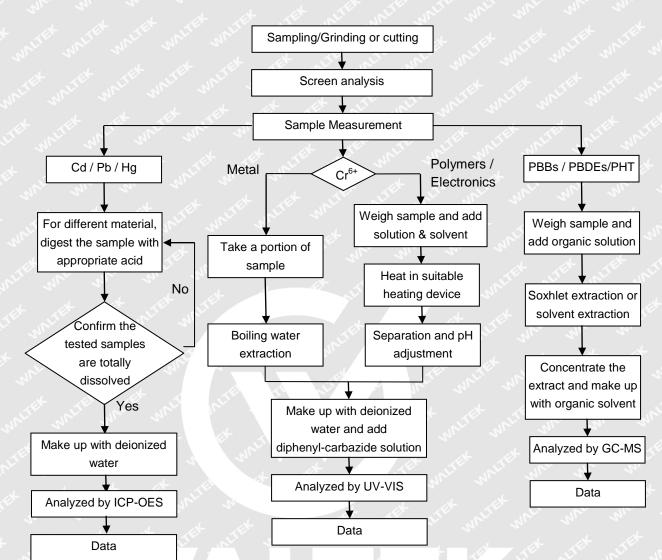
2. Phthalates:

Serial	Why had the		Resul	t (mg/kg)	ı/kg)		
No.	Part No.	DBP	BBP	DEHP	DIBP		
T01	inti with 1 was what	<50	<50	<50	<50		
T02	4	<50	<50	<50	<50		
T03	LIER SLIE GALL WALL	<50	<50	<50	<50		
T04	9	<50	<50	<50	<50		
T05	10	<50	<50	<50	<50		
T06	13	<50	<50	<50	<50		
T07	15+17+23+24+25 [△]	<50	<50	<50	<50		
T08	18	<50	<50	<50	<50		
T09	20	<50	<50	<50	<50		
T10	26	170	<50	<50	<50		
√T11	30	68	<50	<50	<50		

Note:

- (1) "<" = less than
- (2) mg/kg = milligram per kilogram= ppm
- (3) Abbreviation:

"DBP" denotes Dibutyl phthalate, "BBP" denotes Benzyl butyl phthalate (BBP), "DEHP" denotes Bis(2-ethylhexyl)-phthalate, "DIBP" denotes Diisobutyl phthalate, "PHT" denotes Phthalates.

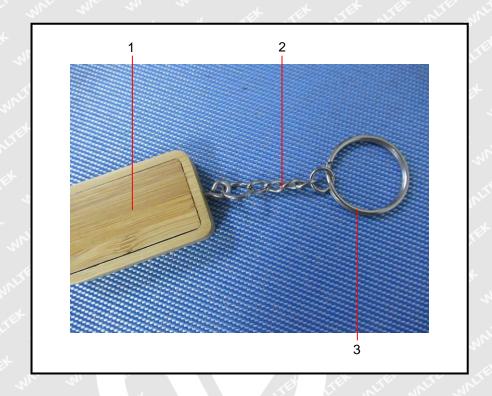

(4) RoHS requirement

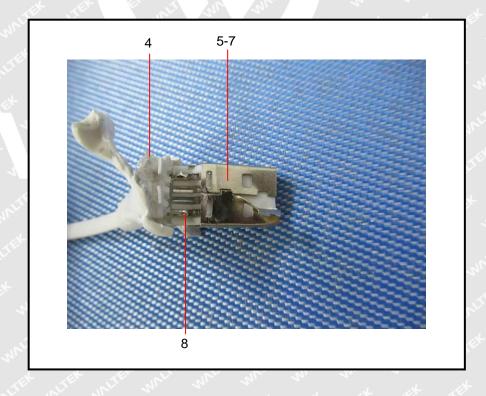
Restricted Substances	Limits
Dibutyl phthalate (DBP)	0.1% (1000 mg/kg)
Benzyl butyl phthalate (BBP)	0.1% (1000 mg/kg)
Di(2-ethylhexyl) phthalate (DEHP)	0.1% (1000 mg/kg)
Di-iso-butyl phthalate (DIBP)	0.1% (1000 mg/kg)

(5) "△"= As client's requirement, the testing was conducted based on mixed components. Results are calculated by the minimum weight of mixed components.

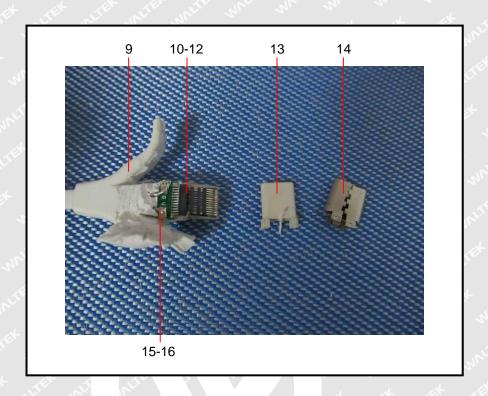
Measurement Flowchart:

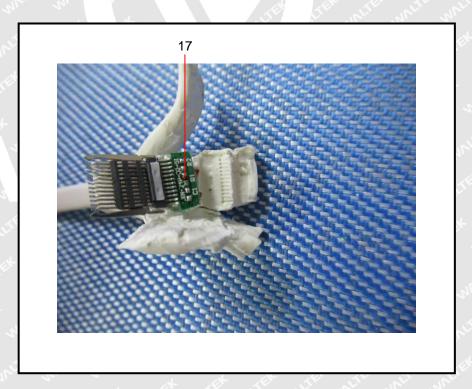
Sample Photo:



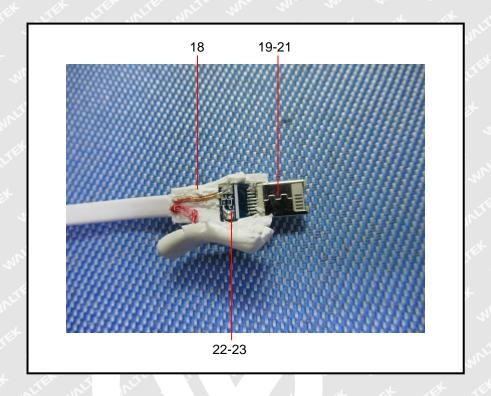


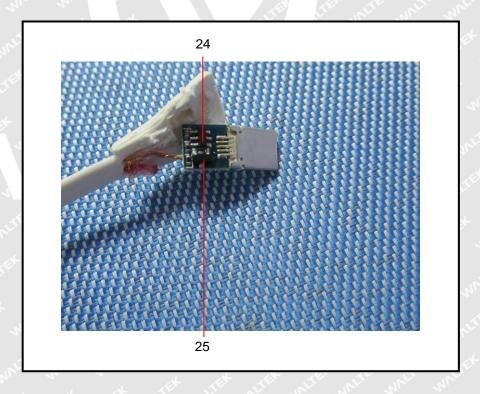
Report No.: WTF19F09067849C


Photograph of parts tested:

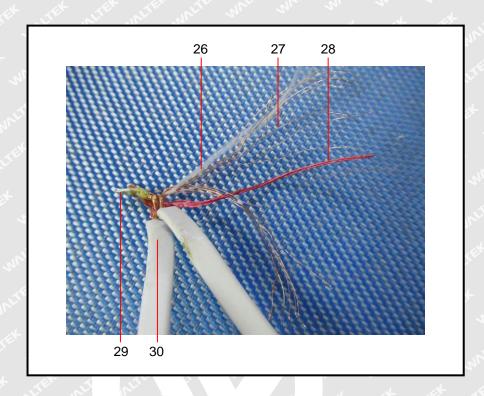


Report No.: WTF19F09067849C





Report No.: WTF19F09067849C



Page 12 of 12

===== End of Report =====

EX OUT OF LIFE CALL