

TEST REPORT

Reference No. : WTF19F10069340C

Applicant: 1 Mid Ocean Brands B.V.

Address: 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon,

Hong Kong

Manufacturer : 115253

Sample Name: 800ml Tritan bottle

Model No. : MO9850

Test Requested.....: In accordance with Regulation (EU) No 10/2011 with amendments,

Council of Europe Resolution AP(2004)5, Council of Europe Resolution CM/Res(2013)9 and Regulation (EC) No 1935/2004.

Test Conclusion.....: Pass (Please refer to next pages for details)

Date of Receipt sample : 2019-10-09

Date of Test : 2019-10-09 to 2019-10-16

Date of Issue : 2019-10-16

Test Result: Please refer to next page (s)

Remark : Selected test(s) as requested by applicant

Remarks:

The results shown in this test report refer only to the sample(s) tested; this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.

Prepared By:

Waltek Services (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Compiled by:

Abby.Zhou / Project Engineer

Approved by:

Swing.Liang / Lab Manager

Vr.

Reference No.: WTF19F10069340C Page 2 of 8

Test Results:

1. Overall Migration Test

un un un	T	Result (mg/kg)			
Food Simulant	Test Condition	No.1	- MDL(mg/kg)	Limit (mg/kg)	
3% Acetic Acid	40°C for 6 hours	ND ND	20	60	
10% Ethanol	40°C for 6 hours	ND TEN	20	Mr. 60 M.	
50% Ethanol	40°C for 6 hours	ND	20	60° mile	

Note:

- 1. Test method: With reference to BS EN 1186-1: 2002, BS EN 1186-3: 2002, BS EN 1186-9: 2002 and BS EN1186-14: 2002.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. "°C" = Celsius degree
- 4. MDL= Method Detection Limit
- 5. ND = Not Detected, less than MDL
- 6. The specification was quoted from Council of Europe Resolution AP (2004)5.

Food Simulant	Test Condition	Result (mg/dm²)	MDL (mg/dm²)	Limit (mg/dm²)	
Food Simulant	rest Condition	No.3	MDE (mg/am)		
3% Acetic Acid	40°C for 6 hours	ND muit	3	10	
10% Ethanol	40°C for 6 hours	ND	THE WALLE	10 0	
50% Ethanol	40°C for 6 hours	ND	3	10 0	

- 1. Test method: With reference to EN 1186-1: 2002, EN 1186-3: 2002, EN 1186-9: 2002 and EN1186-14: 2002.
- 2. "mg/dm²" = milligram per square decimetre
- 3. "°C" = Celsius degree
- 4. MDL= Method Detection Limit
- 5. ND = Not Detected, less than MDL
- 6. The specification was quoted from (EU) No 10/2011 and its amendment (EU) 2016/1416, (EU)2017/752 and (EU)2019/37.
- 7. Mid Ocean: The ratio of volume to surface area was: 0.0016L/0.01dm²

Reference No.: WTF19F10069340C Page 3 of 8

2. Bisphenol A Content*

niter uniter unite	Result (mg/kg)		NADI (m. m/l. m)	
Test Item	No.1	No.3	MDL (mg/kg)	Limit (mg/kg)
Bisphenol A	ND	ND ND	0.1	Not Detected (<0.1mg/kg)

Note:

- 1. Test Method: With reference to EPA3550C:2007, analysis was performed by LC-MS-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. MDL= Method Detection Limit
- 4. ND = Not Detected, less than MDL
- 5. The specification was quoted from Law No 2012-1442.
- 6. The testing item marked with "' does not been accredited by CNAS.

3. Specific Migration of Bisphenol A

Tool Itom	Result (mg/kg)		MDL (ma/ka)	Limit (ma/ka)	
Test Item	No.1	No.3	MDL (mg/kg)	Limit (mg/kg)	
Migration of Bisphenol A	ND	ND	0.01	0.05	

- 1. Test Method: With reference to CEN/TS 13130-13-2005, sample preparation in 3% acetic acid at 40°C for 6 hours, analysis was performed by HPLC.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. MDL= Method Detection Limit
- 4. ND = Not Detected, less than MDL
- 5. The specification was quoted from regulation (EU) No 10/2011 and its amendments (EU) 2018/213.
- 6. The ratio of volume to surface area was: 0.0016L/0.01dm²

Reference No.: WTF19F10069340C Page 4 of 8

4. Council of Europe Resolution CM/Res(2013)9-Specific Migration of Heavy Metal

Took Homos Mile	1st+2nd Migration (mg/kg)	MDL (mg/kg)	Limit (mg/kg)
Test Items	No.2	No.2 MDL (mg/kg)	
Aluminium (Al)	IN ND	0.2	35
Antimony (Sb)	IT IT IT NO WALTER OF	0.02	0.28
Chromium (Cr)	ND	0.04	1.75
Cobalt (Co)	IF UNLIF WIND WILL AN	0.02	0.14
Copper (Cu)	ND ND	0.2	28
Iron (Fe)	1.8	0.4	280
Manganese (Mn)	LEE TEL NOTER MILIT	0.2	12.6
Molybdenum (Mo)	n ND	0.02	0.84
Nickel (Ni)	0.03	0.02	0.98
Silver (Ag)	ND	0.02	0.56
Tin (Sn)	Int ND IN IN	0.2	700
Vanadium (V)	ND	0.01	0.07
Zinc (Zn)	ND	0.2	35 mel
Arsenic (As)	ND ND	0.002	0.014
Barium (Ba)	ND	0.2	8.4
Beryllium (Be)	IF ND ND	0.01	0.07
Cadmium (Cd)	END NITE ON	0.002	0.035
Lead (Pb)	ND	0.01	0.07
Lithium (Li)	ND unit	0.01	0.336
Mercury (Hg)	ND	0.002	0.021
Thallium (TI)	IT MITTE IND WAY	0.0002	0.0007
Magnesium (Mg)	ND THE S	0.2	we -m
Titanium (Ti)	an' an' ND	0.02	t TEX TEXT

Reference No.: WTF19F10069340C Page 5 of 8

Tara Maina	3rd Migration (mg/kg)	NADL (m. m/l.m)	Limit (man/lan)	
Test Items	No.2	MDL (mg/kg)	Limit (mg/kg)	
Aluminium (Al)	ART THE ND THE WALL	0.1	5	
Antimony (Sb)	ND	0.01	0.04	
Chromium (Cr)	I ND M	0.02	0.25	
Cobalt (Co)	ND ND	0.01	0.02	
Copper (Cu)	Mr. M. ND M.	(0.1 of	4	
Iron (Fe)	THE TOND THE WALL	0.2	40	
Manganese (Mn)	ND	0.1	1.8 W	
Molybdenum (Mo)	ND W	0.01	0.12	
Nickel (Ni)	ND	0.01	0.14	
Silver (Ag)	ND ND	0.01	0.08	
Tin (Sn)	ND ITE IN	0.1	100	
Vanadium (V)	ND ND	0.005	0.01	
Zinc (Zn)	J. J. ND	0.1	5 -	
Arsenic (As)	ND	0.001	0.002	
Barium (Ba)	ND	0.1	1.2	
Beryllium (Be)	ND TIE	0.005	0.01	
Cadmium (Cd)	The ND	0.001	0.005	
Lead (Pb)	LIER OLITAD WILL WAS	0.005	0.01	
Lithium (Li)	ND -	0.005	0.048	
Mercury (Hg)	ND ND	0.001	0.003	
Thallium (TI)	ND ND	0.0001	0.0001	
Magnesium (Mg)	ND ND	0.1	TEX SITEX- SITEX	
Titanium (Ti)	K ND NT N	0.01	70, -1	

- 1. Test Method: With reference to BS EN 13130-1: 2004, analysis was performed by ICP-OES and ICP-MS.
- 2. Test Condition and simulant: Sample(s) were migrated with 5g/L citric acid at 40°C for 6 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. MDL = Method Detection Limit
- 5. ND = Not Detected, less than MDL
- 6. "--" = Not regulated
- 7. The specification was quoted from Technical Guide on Metals and alloys used in food contact materials of Council of Europe Resolution CM/Res(2013)9.

Reference No.: WTF19F10069340C Page 6 of 8

5. Specific Migration of heavy metal (Nickel, Aluminium, Barium, Cobalt, Copper, Iron, Lithium, Manganese, Zinc)

We will the state of the state	Result (mg/kg)	MDI (m. m/l.m)	Limit (mg/kg)
Test Items	No.3	MDL (mg/kg)	
Specific migration of Nickel	ND TO AN	0.01	0.02
Specific migration of Aluminium	ND -	0.1 T WE	wer 1m
Specific migration of Barium	ND	0.1	OLITEK ALTEK
Specific migration of Cobalt	ND MALL	0.01	0.05
Specific migration of Copper	ND	of on one	ni w 5 m
Specific migration of Iron	ND	0.1	48
Specific migration of Lithium	ND	0.01	0.6
Specific migration of Manganese	ND LIFE	0.01	0.6
Specific migration of Zinc	ND	0.1	5 6

Note:

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 40°C for 6 hours, analysis was performed by ICP-OES.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. MDL= Method Detection Limit
- 4. ND = Not Detected, less than MDL
- 5. The specification was quoted from (EU) No 10/2011 and its amendment (EU) 2016/1416 and (EU)2017/752.
- 6. The ratio of volume to surface area was: 0.0016L/0.01dm²

6. Specific Migration of Primary Aromatic Amines

Test Item	Result (mg/kg) No.3	MDL (mg/kg)	Limit (mg/kg)
Migration of Primary aromatic amines	TEL NO.EL NO.EL	0.01	Not Detected (<0.01mg/kg)

- 1. Test Method: With reference to § 64 LFGB L No. 00.00-6, analysis was performed by UV-visible Spectrometer.
- 2. Test Condition and simulant: 3% acetic acid at 40°C for 6 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. MDL= Method Detection Limit
- 5. ND = Not Detected, less than MDL
- 6. The specification was quoted from (EU) No 10/2011 and its amendment (EU) 2016/1416 and (EU)2017/752.
- 7. The ratio of volume to surface area was: 0.0016L/0.01dm²

Reference No.: WTF19F10069340C Page 7 of 8

7. Specific Migration of Antimony*

Toot Home	Result (mg/kg)	MDI (Tradica)		
Test Items	No.3	MDL (mg/kg)	Limit (mg/kg)	
Specific migration of Antimony	ND	0.01	0.04	

Note:

- 1. Test Method: With reference to EN 13130-1: 2004, sample preparation in 3% acetic acid at 40°C for 6 hours, analysis was performed by ICP-OES.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. MDL= Method Detection Limit
- 4. ND = Not Detected, less than MDL
- 5. The specification was quoted from (EU) No 10/2011.
- 6. The ratio of volume to surface area was: 0.0016L/0.01dm²
- 7. The testing item marked with '*' does not been accredited by CNAS.

Sample Photo:

Reference No.: WTF19F10069340C Page 8 of 8

Photograph of parts tested:

No.	Photo of testing part	Parts Description	Client Claimed Material
ALTEK 1 VIII MALTEK MALTEK	23	Translucent silicone rubber	Silicone rubber
TEK VI 2 VIVITEK NETEK	3 5 6 7 6 3 10 H R B H 15 6 T B B 20 H R R R 25 8 R R R 30	Silvery metal	Stainless steel
water and the second se	22 - 5 10	Red plastic	Tritan

===== End of Report =====