

TEST REPORT

Report No.....: WTF22F11236864A1F

Applicant : Mid Ocean Brands B.V.

Address : 7/F., Kings Tower, 111 King Lam Street, Cheung Sha

Wan, Kowloon, Hong Kong

Manufacturer 114276

Sample Name: Cork base double wall S/S mug

Sample Model: MO6533

Test Requested: 1. In accordance with Regulation (EU) No 10/2011 with

amendments, Council of Europe Resolution AP(2004)5

and Regulation (EC) No 1935/2004.

2 . In accordance with French Décret n°2007-766 with

amendments and Regulation (EC) No 1935/2004.

Test Conclusion: Pass (Please refer to next pages for details)

Date of Receipt sample 2022-11-24 & 2022-12-13

Date of Issue : 2022-12-20

Test Result : Refer to next page (s)

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Signed for and on behalf of Waltek Testing Group (Foshan) Co., Ltd.

Jessise Liu

Jessise.Liu

Test Results:

1. Overall Migration Test

	TEX STEX OUT	EK RITEK R	tesult (mg/dm	n ²)		at at	
Food Simulant	Test Condition	No.1		A		LOQ	Limit
WILER MULLER MA	SER WHITE WHITE	1 st Migration	2 nd Migration	3 rd Migration	(mg/dm ²)	(mg/dm ²)	
3% Acetic Acid	70°C for 2 hours	ND	ND	ND	3 (4	10	
10% Ethanol	70°C for 2 hours	ND	ND NO	ND	3	10	

Note:

- 1. Test method: With reference to BS EN 1186-1: 2002, BS EN 1186-3: 2002, BS EN 1186-9: 2002 and BS EN 1186-14: 2002.
- 2. "mg/dm²" = milligram per square decimetre
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752, (EU)2019/37 and (EU) 2020/1245.

June 1 O'm land	Tank On Silving	Result (mg/kg)	LOQ	Limit
Food Simulant	Test Condition	No.2	(mg/kg)	(mg/kg)
3% Acetic Acid	70°C for 2 hours	ND ND	20	60
10% Ethanol	70°C for 2 hours	ND ND	20	60

- 1. Test method: With reference to BS EN 1186-1: 2002, BS EN 1186-3: 2002, BS EN 1186-9: 2002 and BS EN 1186-14: 2002.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from Council of Europe Resolution AP (2004)5.

2. Specific Migration of heavy metal

	Result(mg/kg)			WITE WALLE	MULLE MULL	
Test Items	nlier with	No.1	20	LOQ (mg/kg)	Limit (mg/kg)	
unit un och um u	1 st Migration	2 nd Migration	3 rd Migration	- Log (mg/kg)	Limit (mg/kg)	
Specific migration of Nickel	ND	ND O	ND	0.01	0.02	
Specific migration of Aluminium	ND M	ND	ND	0.1	t 31t 3	
Specific migration of Barium	ND	ND	ND	0.1	1	
Specific migration of Cobalt	ND	ND	ND OF	0.01	0.05	
Specific migration of Copper	ND	ND ND	ND	0.1	5	
Specific migration of Iron	ND	ND	ND	0.1	48	
Specific migration of Lithium	ND	ND	ND	0.01	0.6	
Specific migration of Manganese	ND	ND	ND ND	0.01	0.6	
Specific migration of Zinc	ND	ND	ND	0.1	5	
Specific migration of Antimony	ND (ND	ND	0.01	0.04	
Specific migration of Arsenic	ND -	ND	ND	0.01	Not detected (<0.01)	
Specific migration of Cadmium	ND	STEEND STEE	ND	0.002	Not detected (<0.002)	
Specific migration of Chromium	ND	ND of	ND IT	0.01	Not detected (<0.01)	
Specific migration of Mercury	ND	ND	ND TO	0.01	Not detected (<0.01)	
Specific migration of Lead	ND	ND	ND	0.01	Not detected (<0.01)	
Specific migration of Europeum	ND	ND	ND	0.02	EK JEK	
Specific migration of Gadolinium	ND	ND	on ND on	0.02	Sum 10.05	
Specific migration of Lanthanum	ND	ND	ND ND	0.02	Sum<0.05	
Specific migration of Terbium	ND	ND	ND	0.02	TEX TEX	

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 70°C for 2 hours, analysis was performed by ICP-MS.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.

3. Specific Migration of Primary Aromatic Amines

Tool Hom	Result (mg/kg)	1.00 (mg/kg)	Limit (mg/kg)	
Test Item	No.1	LOQ (mg/kg)		
Migration of Primary aromatic amines	ND IN	0.01	Not detected	

- 1. Test Method: With reference to § 64 LFGB L No. 00.00-6, analysis was performed by UV-visible Spectrometer.
- 2. Test Condition and simulant: 3% acetic acid at 70°C for 2 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.

4. Specific Migration of Primary Aromatic Amines (single substance)*

er with mit me me	24. 2.	. J.F	Result(mg/ko	g) - 1	ILLIE OF	Limit
Test Items	CAS No.	W.L.	No.1	20	LOQ	
rest items	CAS NO.	1 st Migration	2 nd Migration	3 rd Migration	(mg/kg)	(mg/kg)
2-methoxyaniline	90-04-0	ND	ND -	ND	0.002	ND
4,4'-Diaminobiphenyl	92-87-5	ND.	ND	ND	0.002	ND
4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	ND	ND	✓ ND ✓	0.002	ND
4,4'-Diaminodiphenylmethane	101-77-9	ND	√ND √	ND	0.002	ND
4,4'-Oxydianiline	101-80-4	ND	ND	ND	0.002	ND
4-chloroaniline	106-47-8	ND	ND	ND	0.002	ND
3,3'-Dimethoxybenzidine	119-90-4	ND	√ ND √	ND	0.002	ND
3,3'-Dimethylbenzidine	119-93-7	an ND an	ND	ND	0.002	ND
2-Methoxy-5-methylaniline	120-71-8	ND	ND	ND	0.002	ND N
2,4,5 – Trimethylaniline	137-17-7	ND	ND	ND	0.002	ND
4,4'-Thiodianiline	139-65-1	ND -	ND	ND	0.002	ND
4-aminoazobenzene	60-09-3	ND	ND	ND	0.002	, ND
2,4-diaminoanisol	615-05-4	ND	ND S	ND	0.002	ND
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND	ND	ND	0.002	ND
2-Naphthylamine	91-59-8	ND	ND	ND	0.002	ND
3,3'-Dichlorobenzidine	91-94-1	ND (ND	ND	0.002	ND ND
4-Aminobiphenyl	92-67-1	ND	ND	ND	0.002	ND
2-methylaniline	95-53-4	- ND	ND	ND	0.002	ND
4-chloro-o-Toluidine	95-69-2	ND	ND	ND	0.002	↓ ND →
2,4-Toluylendiamine	95-80-7	ND	√ ND √	ND	0.002	ND
2,4-Aminoazotoluene	97-56-3	AND AN	ND	ND	0.002	ND
2-Amino-4-nitrotoluene	99-55-8	ND	ND	ND	0.002	MD W
2,4-Xylidin	95-68-1	ND	ND	ND	0.002	ND
2,6-Xylidin	87-62-7	OF ND	ND	ND	0.002	ND
1, 3 - phenylene diamine	108-45-2	ND	ND	ND	0.002	ND.

- 1. Test Method: With reference to EN 13130-1:2004, analysis was performed by LC-MS-MS.
- 2. Test Condition and simulant: 3% acetic acid at 70°C for 6 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.
- 7. The testing item marked with '*' does not been accredited by CNAS.

5. Bisphenol A Content*

Tarker	Result (mg/kg)		100 (22 27/122)	Limit (no m/lum)
Test Item	No.1	No.2	LOQ (mg/kg)	Limit (mg/kg)
Bisphenol A	ND (III)	ND	0.1	Not Detected

Note:

- 1. Test Method: With reference to EPA3550C:2007, analysis was performed by LC-MS-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from Law No 2012-1442.
- 6. The testing item marked with '*' does not been accredited by CNAS.

6. Peroxide Value Test*

LIEN STEP TORKER WILLIAM W	Result	INTER WILLER Limit WILLER W	
Test Item	No.2		
Peroxide Value	Absent	Absent	

Note:

- 1. Test method: With reference to French pharmacopoeia Xth edition.
- 2. The specification was quoted from French Arrêté du 25 novembre 1992 for Silicone Elastomers.
- 3. The testing item marked with '*' does not been accredited by CNAS.

7. Specific Migration of Organotin (as Tin)

Food Simulant	Toot Condition	Result (mg/kg)		Limit (mg/kg)	
Food Simulant	Food Simulant Test Condition No.2		LOQ (mg/kg)		
3% acetic acid	70°C for 2 hours	ND NO	0.01	0.1	

- 1. Test Method: With reference to BS EN 13130-1: 2004, analysis was performed by ICP-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected, less than LOQ
- 5. The specification was quoted from French Arrêté du 25 novembre 1992 for Silicone Elastomers.

8. Council of Europe Resolution CM/Res(2013)9-Specific Migration of Heavy Metal

Test Items	1st+2nd Migration (mg/kg)	LOQ (mg/kg)	Limit (mg/kg)	
restitems	No.3	LOQ (mg/kg)	Limit (mg/kg)	
Aluminium (Al)	ND A	0.2	35	
Antimony (Sb)	ND ND	0.02	0.28	
Chromium (Cr)	0.04	0.04	1.75	
Cobalt (Co)	ND	0.02	0.14	
Copper (Cu)	ND ND	0.2	28	
Iron (Fe)	0.6	0.4	280	
Manganese (Mn)	ND ND	0.2	12.6	
Molybdenum (Mo)	Et TEL ND EL MALTE	0.02	0.84	
Nickel (Ni)	0.02	0.02	0.98	
Silver (Ag)	LIFE METER MO METER A	0.02	0.56	
Tin (Sn)	ND +	0.2	700	
Vanadium (V)	NO NO NO	0.01	0.07	
Zinc (Zn)	ND At NO	0.2	35	
Arsenic (As)	ND	0.002	0.014	
Barium (Ba)	ND ND	0.2	8.4	
Beryllium (Be)	ND	0.01	0.07	
Cadmium (Cd)	The ND and In	0.002	0.035	
Lead (Pb)	, ND	0.01	0.07	
Lithium (Li)	ND	0.01	0.336	
Mercury (Hg)	ND ND	0.002	0.021	
Thallium (TI)	ND	0.0002	0.0007	
Magnesium (Mg)	ND NN	0.2	et tet tek	
Titanium (Ti)	A ND	0.02	711 - 711	

t famous si	3rd Migration (mg/kg)	100 (===//-=)	Limit (mage/legs)	
Test Items	No.3	LOQ (mg/kg)	Limit (mg/kg)	
Aluminium (Al)	WELL NO NEW TOWN	0.1	5	
Antimony (Sb)	THE THE ND THE MITTER	0.01	0.04	
Chromium (Cr)	ND	0.02	0.25	
Cobalt (Co)	ND NOT	0.01	0.02	
Copper (Cu)	ND	0.1	4	
Iron (Fe)	MIND WITH A	0.2	40	
Manganese (Mn)	TEL TEND THE MINIS	0.1	1.8	
Molybdenum (Mo)	ND	0.01	0.12	
Nickel (Ni)	ND ND	0.01	0.14	
Silver (Ag)	ND	0.01	0.08	
Tin (Sn)	I WILL MUD WELL	0.1	100	
Vanadium (V)	L THE UND THE WAY	0.005	0.01	
Zinc (Zn)	ND	0.1	merita un 5 mil	
Arsenic (As)	ND	0.001	0.002	
Barium (Ba)	ND	0.1	1.2	
Beryllium (Be)	ND	0.005	0.01	
Cadmium (Cd)	ND WITE WA	0.001	0.005	
Lead (Pb)	ND ND	0.005	0.01	
Lithium (Li)	THE NO. IN THE	0.005	0.048	
Mercury (Hg)	ND ND	0.001	0.003	
Thallium (TI)	ND ND	0.0001	0.0001	
Magnesium (Mg)	ND ND	1. 0.1 m	2 111 - 11	
Titanium (Ti)	ND ND	0.01	EK NITER TRITE	

- 1. Test Method: With reference to BS EN 13130-1: 2004, analysis was performed by ICP-MS.
- 2. Test Condition and simulant: Sample(s) were migrated with 5g/L citric acid at 70°C for 2 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. "--" = Not regulated
- 7. The specification was quoted from Technical Guide on Metals and alloys used in food contact materials of Council of Europe Resolution CM/Res(2013)9.

9. Volatile Organic Compounds

Took Itom	Toot Condition	Result (%)	100 (%)	Limit (O()	
Test Item	Test Condition	No.4	LOQ (%)	Limit (%)	
Volatile Organic compounds	200°C for 4 hours	0.10	0.05	0.5	

Note:

- 1. Test method: With reference to French Arrêté du 25 novembre 1992 Annex III for silicone Elastomers.
- 2. "%" = percentage by weight
- 3. LOQ = Limit of quantitation
- 4. The specification was quoted from French Arrêté du 25 novembre 1992 for Silicone Elastomers.

Sample Photo:

Photograph of parts tested:

No.	graph of parts tested: Photo of testing part	Parts Description	Client Claimed Material
WALTE WALTEX STE! WAL	23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Transparent plastic	PS MALLER
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Black silicone rubber	Silicone rubber (Sample received at 2022-11-24)
EX WAS	2 4 5 6 7 8 9 10 H 2 B H 15 16 H IS 12 20 A 22 24 25 EA 28	Silvery metal	Stainless steel
TE WILL WILL WILL WILL WILL WILL WILL WIL	3 4 5 6 7 8 9 10 11 12 13 14 15	Black silicone rubber	Silicone rubber (Sample received at 2022-12-13)

Remarks:

- 1. The results shown in this test report refer only to the sample(s) tested;
- 2. This test report cannot be reproduced, except in full, without prior written permission of the company;
- 3. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver;
- 4. The Applicant name and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which Waltek hasn't verified;
- 5. If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.

===== End of Report ======

