



# **TEST REPORT**

| Reference No | WTF21F11126219X1F |
|--------------|-------------------|
|              |                   |

Applicant .....: Mid Ocean Brands B.V.

Address ......: 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon,

Hong Kong

Manufacturer ..... : 117444

Sample Name ...... : Double wall vacuum bottle with magnetic lid

Model No. ..... MO6376

Test Requested ...... : 1. In accordance with Regulation (EU) No 10/2011 with amendments,

Council of Europe Resolution CM/Res(2013)9 and Regulation (EC) No

1935/2004.

2. In accordance with French Décret n°2007-766 with amendments

and Regulation (EC) No 1935/2004.

Test Conclusion....: Pass (Please refer to next pages for details)

Date of Receipt sample .... : 2021-11-18

**Date of Test** ...... 2021-11-18 to 2021-12-03

Date of Issue ..... : 2021-12-03

Test Result .....: Please refer to next page (s)

Note.....: 1) Selected test(s) as requested by applicant.

2) This report is based on Waltek test report WTF21F11126219F for

revising, and replaced report WTF21F11126219F.

#### Remarks:

The results shown in this test report refer only to the sample(s) tested; this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.

#### Prepared By:

#### Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Compiled by: Approved by:

Abby.Zhou / Project Engineer

Dino.Zhang / Technical Manage





## **Test Results:**

## 1. Overall Migration Test

|                                |                  |                           |                              | 100                            |
|--------------------------------|------------------|---------------------------|------------------------------|--------------------------------|
|                                | TEX STEX OUT     | Result (mg/dm²)           |                              | 74 EX                          |
| Food Simulant                  | Test Condition   | 1 <sup>st</sup> Migration | LOQ<br>(mg/dm <sup>2</sup> ) | Limit<br>(mg/dm <sup>2</sup> ) |
| NITER WITER WAS ER WHITE WHITE | No.1             |                           | arter vi                     |                                |
| 3% Acetic Acid                 | 70°C for 2 hours | ND WE WILL                | 3                            |                                |
| 10% Ethanol                    | 70°C for 2 hours | A THE ND STATE WALLE      | anti 3 anti                  | ANT AND                        |

| An an an an                |                  | Result (mg/dm²)           | The Maria       | ne m              |
|----------------------------|------------------|---------------------------|-----------------|-------------------|
| Food Simulant              | Test Condition   | 2 <sup>nd</sup> Migration | LOQ<br>(mg/dm²) | Limit<br>(mg/dm²) |
| TEX TEX STEX SILIER SPITER | No.1             | (1119/0111)               | (mg/am/)        |                   |
| 3% Acetic Acid             | 70°C for 2 hours | THE NOT WHITE WALL        | 3 3             | 70 - 20           |
| 10% Ethanol                | 70°C for 2 hours | ND HET WHEE               | 3 4             | White-Mile        |

| Food Simulant Test Condition | Test Condition   | Result (mg/dm²)  3 <sup>rd</sup> Migration | LOQ<br>(mg/dm²) | Limit (mg/dm²) |
|------------------------------|------------------|--------------------------------------------|-----------------|----------------|
|                              | No.1             | _ (mg/um )                                 | (mg/am )        |                |
| 3% Acetic Acid               | 70°C for 2 hours | THE LITER AND WATER MATER                  | 3 41            | 10             |
| 10% Ethanol                  | 70°C for 2 hours | ND                                         | 70° 3 70°       | 10             |

- 1. Test method: With reference to BS EN 1186-1: 2002 and BS EN 1186-3: 2002
- 2. "mg/dm<sup>2</sup>" = milligram per square decimetre
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752, (EU)2019/37 and (EU) 2020/1245.



Reference No.: WTF21F11126219X1F Page 3 of 16

| Fard Cinculant               | Took Constition  | Result (mg/kg)                 | 1.00(===/(==) | Limit |  |
|------------------------------|------------------|--------------------------------|---------------|-------|--|
| Food Simulant Test Condition | No.2             | LOQ(mg/kg)                     | (mg/kg)       |       |  |
| 3% Acetic Acid               | 70°C for 2 hours | ntitet intitet ND til Jiha vil | 20            | 60    |  |
| 10% Ethanol                  | 70°C for 2 hours | ND * STEEL NO                  | 20            | 60    |  |

#### Note:

- 1. Test method: With reference to EN 1186-1: 2002 and EN 1186-3: 2002
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from Council of Europe Resolution AP(2004)5 and French Arrêté du 25 novembre 1992 for Silicone Elastomers.

#### 2. Peroxide Value Test\*

| Toot Itom      | Result | Limit White White       |
|----------------|--------|-------------------------|
| Test Item      | No.2   | Who will be a feet that |
| Peroxide Value | Absent | Absent                  |

#### Note:

- 1. Test method: With reference to European Pharmacopeia (2005) ANNEX X F, Clause 2.5.5, method A.
- 2. The specification was quoted from French Arrêté du 25 novembre 1992 for Silicone Elastomers.
- 4. The testing item marked with '\*' does not been accredited by CNAS.

## 3. Volatile Organic Compounds

| Total House A              | Result (%) | 100 (%) | Limit (%) |  |
|----------------------------|------------|---------|-----------|--|
| Test Item                  | No.2       | LOQ (%) |           |  |
| Volatile Organic compounds | 0.24       | 0.05    | 0.5       |  |

- 1. Test method: With reference to French Arrêté du 25 novembre 1992 Annex III for silicone Elastomers.
- 2. "%" = percentage by weight
- 3. LOQ = Limit of quantitation
- 4. The specification was quoted from French Arrêté du 25 novembre 1992 for Silicone Elastomers.





4. Specific Migration of Organotin (as Tin)

| Took Hom                                 | Result (mg/kg) | 100 (mg/kg) | Limit (mg/kg) |  |
|------------------------------------------|----------------|-------------|---------------|--|
| Test Item                                | No.2           | LOQ (mg/kg) |               |  |
| Specific Migration of Organotin (as Tin) | ND ND          | 0.01        | 0.1           |  |

#### Note:

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 70°C for 2 hours, analysis was performed by ICP-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected, less than LOQ
- 5. The specification was quoted from French Arrêté du 25 novembre 1992 for Silicone Elastomers.

### 5. Bisphenol A Content\*

| NITER SUPTEMBLE WILL | Result (mg/kg) |      |             |               |
|----------------------|----------------|------|-------------|---------------|
| Test Item            | No.1           | No.2 | LOQ (mg/kg) | Limit (mg/kg) |
| Bisphenol A          | ND _           | + ND | 0.1         | Not Detected  |

- 1. Test Method: With reference to EPA3550C:2007, analysis was performed by GC-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from Law No 2012-1442.
- 6. The testing item marked with '\*' does not been accredited by CNAS.



Page 5 of 16 Reference No.: WTF21F11126219X1F



6. Specific Migration of heavy metal

| white wife when when              | Result(mg/kg)             | LIER OUTER WILTER | WILL MULL             |  |
|-----------------------------------|---------------------------|-------------------|-----------------------|--|
| Test Items                        | 1 <sup>st</sup> Migration | LOQ (mg/kg)       | Limit (mg/kg)         |  |
| min min my my                     | No.1                      | ier white white   | Write Murr            |  |
| Specific migration of Nickel      | ND ND                     | 0.01              | TEK MITTER            |  |
| Specific migration of Aluminium   | TEX NO LL VIOL            | 0.1               | t 75                  |  |
| Specific migration of Barium      | ND et street              | 0.1               | mr m                  |  |
| Specific migration of Cobalt      | ND ND                     | 0.01              | MITER MALTE           |  |
| Specific migration of Copper      | WILLIE WIND WE WE         | 0.1               | A At                  |  |
| Specific migration of Iron        | THE NO STEEL WHITE        | 0.1               | n mr                  |  |
| Specific migration of Lithium     | ND                        | 0.01              | EN WILLER WI          |  |
| Specific migration of Manganese   | IET ND WA                 | 0.01              | - dit d               |  |
| Specific migration of Zinc        | - ND NETTER               | prift on the one  | Mr Mr.                |  |
| Specific migration of Antimony    | ND                        | 0.01              | WILLER WALLE          |  |
| Specific migration of Arsenic*    | ND ND                     | 0.01              | Not detected (<0.01)  |  |
| Specific migration of Cadmium*    | ND ND                     | 0.002             | Not detected (<0.002) |  |
| Specific migration of Chromium*   | ND WILL                   | 0.01              | Not detected (<0.01)  |  |
| Specific migration of Mercury*    | White W ND White W        | 0.01              | Not detected (<0.01)  |  |
| Specific migration of Lead*       | metel and ND metel and    | 0.01              | Not detected (<0.01)  |  |
| Specific migration of Europeum*   | ND THE STEE               | 0.02              | Mrr. M                |  |
| Specific migration of Gadolinium* | ND                        | 0.02              | - DITEK MAL           |  |
| Specific migration of Lanthanum*  | ND WILL                   | 0.02              | 24 ZB                 |  |
| Specific migration of Terbium*    | ND JET I                  | 0.02              | antite when           |  |



Reference No.: WTF21F11126219X1F Page 6 of 16

| white mer were and                | Result(mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LIER NITER WITE     | WILL WILL             |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|
| Test Items                        | 2 <sup>nd</sup> Migration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOQ (mg/kg)         | Limit (mg/kg)         |
| min my my my                      | No.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ER WALLEY WALLE     | Write Aurra           |
| Specific migration of Nickel      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                | TEK INTEK             |
| Specific migration of Aluminium   | ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1                 | t 5.                  |
| Specific migration of Barium      | ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Intil Juni 0.1 Juni | mr m                  |
| Specific migration of Cobalt      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                | MITEL MITE            |
| Specific migration of Copper      | IND WE WE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                 | A - A                 |
| Specific migration of Iron        | ND STATE OF THE ST | 0.1                 | r. mr.                |
| Specific migration of Lithium     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                | EN WILLER WI          |
| Specific migration of Manganese   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                | - 10 S                |
| Specific migration of Zinc        | ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | out 0.1             | Mr Mr.                |
| Specific migration of Antimony    | ND -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                | WILL WILLE            |
| Specific migration of Arsenic*    | ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01                | Not detected (<0.01)  |
| Specific migration of Cadmium*    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002               | Not detected (<0.002) |
| Specific migration of Chromium*   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                | Not detected (<0.01)  |
| Specific migration of Mercury*    | White I ND Will I'm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                | Not detected (<0.01)  |
| Specific migration of Lead*       | nettet unit ND mitter unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01                | Not detected (<0.01)  |
| Specific migration of Europeum*   | ND CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                | Mery M                |
| Specific migration of Gadolinium* | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                | - NITEK MIL           |
| Specific migration of Lanthanum*  | ND web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                | 24 28                 |
| Specific migration of Terbium*    | ND S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                | entite met.           |

Reference No.: WTF21F11126219X1F Page 7 of 16

| must mer mer my                   | Result(mg/kg)             | LIER OLITER MILE | Limit (mg/kg)         |  |
|-----------------------------------|---------------------------|------------------|-----------------------|--|
| Test Items                        | 3 <sup>rd</sup> Migration | LOQ (mg/kg)      |                       |  |
| Murry Mary May My A               | No.1                      | IET WITE WALLE   | Write Murr            |  |
| Specific migration of Nickel      | M ND                      | 0.01             | 0.02                  |  |
| Specific migration of Aluminium   | LIET NO LL WALL           | 0.1              | 1,                    |  |
| Specific migration of Barium      | A ND OF STEEL             | mer 0.1 unit     | with the              |  |
| Specific migration of Cobalt      | ND ND                     | (c) (c) (c)      | 0.05                  |  |
| Specific migration of Copper      | White white we we         | 0.1              | 5                     |  |
| Specific migration of Iron        | THE NUT NO NUTER MALE     | 0.1              | 48                    |  |
| Specific migration of Lithium     | ND A                      | 0.01             | 0.6                   |  |
| Specific migration of Manganese   | TE MELT NO WAY            | 0.01             | 0.6                   |  |
| Specific migration of Zinc        | - ND NATE                 | 0.1              | 5                     |  |
| Specific migration of Antimony    | ND                        | 0.01             | 0.04                  |  |
| Specific migration of Arsenic*    | ND ND                     | 0.01             | Not detected (<0.01)  |  |
| Specific migration of Cadmium*    | ND ND                     | 0.002            | Not detected (<0.002) |  |
| Specific migration of Chromium*   | MD WILL                   | 0.01             | Not detected (<0.01)  |  |
| Specific migration of Mercury*    | antiff w ND unit w        | 0.01             | Not detected (<0.01)  |  |
| Specific migration of Lead*       | Inter unit ND Inter unit  | 0.01             | Not detected (<0.01)  |  |
| Specific migration of Europeum*   | ND TEL NOTES              | 0.02             | INVER ON              |  |
| Specific migration of Gadolinium* | ND                        | 0.02             | - 0.05                |  |
| Specific migration of Lanthanum*  | ND WILL O                 | 0.02             | Sum<0.05              |  |
| Specific migration of Terbium*    | ND ND                     | 0.02             | Wer. Mer.             |  |





#### Note:

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 70°C for 2 hours, analysis was performed by ICP-OES and ICP-MS.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.
- 6. The testing item marked with '\*' does not been accredited by CNAS.

## 7. Specific Migration of Primary Aromatic Amines

| Test Item                            | Result (mg/kg) | LOQ (mg/kg)   | Limit (ma/ka) |
|--------------------------------------|----------------|---------------|---------------|
| restitem                             | No.1           | LOQ (IIIg/kg) | Limit (mg/kg) |
| Migration of Primary aromatic amines | ND ND          | 0.002         | <0.01mg/kg    |

- 1. Test Method: With reference to § 64 LFGB L No. 00.00-6, analysis was performed by UV-visible Spectrometer.
- 2. Test Condition and simulant: 3% acetic acid at 70°C for 2 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.

Reference No.: WTF21F11126219X1F Page 9 of 16

8. Specific Migration of Primary Aromatic Amines (single substance)\*

|                                               | 14 14    | Result(mg/kg)                            | MITTER SIGNIFER | Write M                                       |  |
|-----------------------------------------------|----------|------------------------------------------|-----------------|-----------------------------------------------|--|
| Test Items                                    | CAS No.  | No. 1 <sup>st</sup> Migration LOQ (mg/kg |                 | Limit (mg/kg)                                 |  |
|                                               | A 64     | No.1                                     | (mg/kg)         | (mg/kg)                                       |  |
| 2-methoxyaniline                              | 90-04-0  | ND                                       | 0.002           | it with                                       |  |
| 4,4'-Diaminobiphenyl                          | 92-87-5  | ND WELL                                  | 0.002           | -23                                           |  |
| 4,4'-Methylen-bis-(2-chloroaniline)           | 101-14-4 | ND ND                                    | 0.002           | White W                                       |  |
| 4,4'-Diaminodiphenylmethane                   | 101-77-9 | ND ND                                    | 0.002           |                                               |  |
| 4,4'-Oxydianiline                             | 101-80-4 | ND                                       | 0.002           | iver <del>-o</del> nce                        |  |
| 4-chloroaniline                               | 106-47-8 | ND                                       | 0.002           | SEK TE                                        |  |
| 3,3'-Dimethoxybenzidine                       | 119-90-4 | ND W                                     | 0.002           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         |  |
| 3,3'-Dimethylbenzidine                        | 119-93-7 | ND OF                                    | 0.002           | MALTE.                                        |  |
| 2-Methoxy-5-methylaniline                     | 120-71-8 | ND                                       | 0.002           | , L. **                                       |  |
| 2,4,5 – Trimethylaniline                      | 137-17-7 | ND ND                                    | 0.002           | mem                                           |  |
| 4,4'-Thiodianiline                            | 139-65-1 | ND                                       | 0.002           | 17EH 17                                       |  |
| 4-aminoazobenzene                             | 60-09-3  | ND ND W                                  | 0.002           | , <u>, , , , , , , , , , , , , , , , , , </u> |  |
| 2,4-diaminoanisol                             | 615-05-4 | ND                                       | 0.002           | ET WATE                                       |  |
| 4,4'-diamino-3,3'-<br>dimethyldiphenylmethane | 838-88-0 | ND                                       | 0.002           | - MITTELL O                                   |  |
| 2-Naphthylamine                               | 91-59-8  | Marie and and                            | 0.002           |                                               |  |
| 3,3'-Dichlorobenzidine                        | 91-94-1  | ND ND                                    | 0.002           | المائية عميران                                |  |
| 4-Aminobiphenyl                               | 92-67-1  | ND                                       | 0.002           | 16t - 16                                      |  |
| 2-methylaniline                               | 95-53-4  | THE ND OF THE WAY                        | 0.002           | 100                                           |  |
| 4-chloro-o-Toluidine                          | 95-69-2  | ND                                       | 0.002           | A TOTAL                                       |  |
| 2,4-Toluylendiamine                           | 95-80-7  | ND WE                                    | 0.002           |                                               |  |
| 2,4-Aminoazotoluene                           | 97-56-3  | ND STEEL                                 | 0.002           | الله - الما                                   |  |
| 2-Amino-4-nitrotoluene                        | 99-55-8  | ND                                       | 0.002           | 4FF 5                                         |  |
| 2,4-Xylidin                                   | 95-68-1  | ND ND                                    | 0.002           | Ver Tiles                                     |  |
| 2,6-Xylidin                                   | 87-62-7  | ND                                       | 0.002           | EL NETER                                      |  |
| 1, 3 - phenylene diamine                      | 108-45-2 | ND WALL                                  | 0.002           |                                               |  |





|                                               | 20, 20   | Result(mg/kg)             | INVIEW MALTER  | Limit<br>(mg/kg)  |
|-----------------------------------------------|----------|---------------------------|----------------|-------------------|
| Test Items                                    | CAS No.  | 2 <sup>nd</sup> Migration | LOQ<br>(mg/kg) |                   |
|                                               | at at    | No.1                      |                |                   |
| 2-methoxyaniline                              | 90-04-0  | ND                        | 0.002          | it with           |
| 4,4'-Diaminobiphenyl                          | 92-87-5  | ND WALL                   | 0.002          | -10,              |
| 4,4'-Methylen-bis-(2-chloroaniline)           | 101-14-4 | ND +                      | 0.002          | WILLE M           |
| 4,4'-Diaminodiphenylmethane                   | 101-77-9 | My AND AN                 | 0.002          |                   |
| 4,4'-Oxydianiline                             | 101-80-4 | ND                        | 0.002          | iner and          |
| 4-chloroaniline                               | 106-47-8 | ND                        | 0.002          | SEP TIE           |
| 3,3'-Dimethoxybenzidine                       | 119-90-4 | TET ND I'M                | 0.002          | (10)              |
| 3,3'-Dimethylbenzidine                        | 119-93-7 | ND of                     | 0.002          | War Life          |
| 2-Methoxy-5-methylaniline                     | 120-71-8 | ND ND                     | 0.002          | - 10 <sup>+</sup> |
| 2,4,5 – Trimethylaniline                      | 137-17-7 | ND ND                     | 0.002          | anosan            |
| 4,4'-Thiodianiline                            | 139-65-1 | ND                        | 0.002          | TEK TI            |
| 4-aminoazobenzene                             | 60-09-3  | atter and ND with all     | 0.002          |                   |
| 2,4-diaminoanisol                             | 615-05-4 | ND A                      | 0.002          | NATE OF STREET    |
| 4,4'-diamino-3,3'-<br>dimethyldiphenylmethane | 838-88-0 | ND                        | 0.002          | - Willey W        |
| 2-Naphthylamine                               | 91-59-8  | MD Me                     | 0.002          | 76-               |
| 3,3'-Dichlorobenzidine                        | 91-94-1  | ND STA                    | 0.002          | Wile - W          |
| 4-Aminobiphenyl                               | 92-67-1  | ND                        | 0.002          | LET -JE           |
| 2-methylaniline                               | 95-53-4  | THE ND NOTE OF            | 0.002          | 211               |
| 4-chloro-o-Toluidine                          | 95-69-2  | ND                        | 0.002          | J. WEEK           |
| 2,4-Toluylendiamine                           | 95-80-7  | ND WELL                   | 0.002          | , E               |
| 2,4-Aminoazotoluene                           | 97-56-3  | ND+ ND+                   | 0.002          | الله مارس         |
| 2-Amino-4-nitrotoluene                        | 99-55-8  | AND AND                   | 0.002          | 18 - S            |
| 2,4-Xylidin                                   | 95-68-1  | ND ND                     | 0.002          | U. 714.           |
| 2,6-Xylidin                                   | 87-62-7  | ND                        | 0.002          | EK NITER          |
| 1, 3 - phenylene diamine                      | 108-45-2 | The ND NEW WAY            | 0.002          | -2,               |



Reference No.: WTF21F11126219X1F Page 11 of 16

|                                               | 24 12    | Result(mg/kg)       | NIFE WALTER    |                  |
|-----------------------------------------------|----------|---------------------|----------------|------------------|
| Test Items                                    | CAS No.  | 3" Migration        | LOQ<br>(mg/kg) |                  |
|                                               | at at    | No.1                |                | (mg/kg)          |
| 2-methoxyaniline                              | 90-04-0  | ND                  | 0.002          | ND               |
| 4,4'-Diaminobiphenyl                          | 92-87-5  | ND W                | 0.002          | ND               |
| 4,4'-Methylen-bis-(2-chloroaniline)           | 101-14-4 | ND - ND             | 0.002          | ND               |
| 4,4'-Diaminodiphenylmethane                   | 101-77-9 | MD MD               | 0.002          | ND               |
| 4,4'-Oxydianiline                             | 101-80-4 | ND NITE             | 0.002          | ND               |
| 4-chloroaniline                               | 106-47-8 | ND                  | 0.002          | ND               |
| 3,3'-Dimethoxybenzidine                       | 119-90-4 | LITE WALLENDALL WAL | 0.002          | ND               |
| 3,3'-Dimethylbenzidine                        | 119-93-7 | ND of               | 0.002          | ND               |
| 2-Methoxy-5-methylaniline                     | 120-71-8 | ND ND               | 0.002          | ND               |
| 2,4,5 – Trimethylaniline                      | 137-17-7 | ND ND               | 0.002          | MD <sub>11</sub> |
| 4,4'-Thiodianiline                            | 139-65-1 | ND                  | 0.002          | ND               |
| 4-aminoazobenzene                             | 60-09-3  | net me ND met an    | 0.002          | ND               |
| 2,4-diaminoanisol                             | 615-05-4 | ND A                | 0.002          | ND               |
| 4,4'-diamino-3,3'-<br>dimethyldiphenylmethane | 838-88-0 | ND                  | 0.002          | ND               |
| 2-Naphthylamine                               | 91-59-8  | Maria ND Maria      | 0.002          | ND               |
| 3,3'-Dichlorobenzidine                        | 91-94-1  | ND THE              | 0.002          | ND               |
| 4-Aminobiphenyl                               | 92-67-1  | M ND W              | 0.002          | ND               |
| 2-methylaniline                               | 95-53-4  | LIFET MIND NITE WA  | 0.002          | ND               |
| 4-chloro-o-Toluidine                          | 95-69-2  | ND                  | 0.002          | ND               |
| 2,4-Toluylendiamine                           | 95-80-7  | Marin ND Wall       | 0.002          | ND               |
| 2,4-Aminoazotoluene                           | 97-56-3  | ND+ John            | 0.002          | ND.              |
| 2-Amino-4-nitrotoluene                        | 99-55-8  | WD WIND             | 0.002          | ND               |
| 2,4-Xylidin                                   | 95-68-1  | ND ND               | 0.002          | ND               |
| 2,6-Xylidin                                   | 87-62-7  | ND                  | 0.002          | ND               |
| 1, 3 - phenylene diamine                      | 108-45-2 | IT IND IN IN        | 0.002          | ND               |





Reference No.: WTF21F11126219X1F

- 1. Test Method: With reference to EN 13130-1:2004, analysis was performed by LC-MS-MS.
- 2. Test Condition and simulant: 3% acetic acid at 70°C for 2 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.
- 7. The testing item marked with '\*' does not been accredited by CNAS.





Reference No.: WTF21F11126219X1F Page 13 of 16

9. Council of Europe Resolution CM/Res(2013)9-Specific Migration of Heavy Metal

| Test Items      | 1st+2nd Migration (mg/kg) | LOO (ma/ka) | Line it (no or //) |
|-----------------|---------------------------|-------------|--------------------|
| restitems       | No.3                      | LOQ (mg/kg) | Limit (mg/kg)      |
| Aluminium (AI)  | ND ND                     | 0.2         | 35                 |
| Antimony (Sb)   | MI THE NOT WELL           | 0.02        | 0.28               |
| Chromium (Cr)   | 0.07                      | 0.04        | 1.75               |
| Cobalt (Co)     | ND                        | 0.02        | 0.14               |
| Copper (Cu)     | THE NO WELL AND           | 0.2         | 28                 |
| Iron (Fe)       | 1.3                       | 0.4         | 280                |
| Manganese (Mn)  | NDIN' ND                  | 0.2         | 12.6               |
| Molybdenum (Mo) | at the ND let walter      | 0.02        | 0.84               |
| Nickel (Ni)     | ND ND                     | 0.02        | 0.98               |
| Silver (Ag)     | TE NO WALL VE             | 0.02        | 0.56               |
| Tin (Sn)        | ND +                      | 0.2         | 700                |
| Vanadium (V)    | Maria Maria MD Maria      | 0.01        | 0.07               |
| Zinc (Zn)       | ND AT MILE                | 0.2         | 35                 |
| Arsenic (As)    | ND                        | 0.002       | 0.014              |
| Barium (Ba)     | ND ND                     | 0.2         | 8.4                |
| Beryllium (Be)  | ND                        | 0.01        | 0.07               |
| Cadmium (Cd)    | IT WALL OF NO AND AND AND | 0.002       | 0.035              |
| Lead (Pb)       | ND ND                     | 0.01        | 0.07               |
| Lithium (Li)    | ND                        | 0.01        | 0.336              |
| Mercury (Hg)    | I ND LI                   | 0.002       | 0.021              |
| Thallium (TI)   | ND                        | 0.0002      | 0.0007             |
| Magnesium (Mg)  | II ND                     | 0.2         | et jet jek         |
| Titanium (Ti)   | , ND                      | 0.02        | 7/1 20             |



Reference No.: WTF21F11126219X1F Page 14 of 16

| Toot Itomo      | 3rd Migration (mg/kg) | 1.00 (ma/ka) | Limit (mg/kg)   |  |
|-----------------|-----------------------|--------------|-----------------|--|
| Test Items      | No.3                  | LOQ (mg/kg)  |                 |  |
| Aluminium (Al)  | ND ND                 | 0.1          | 5 5             |  |
| Antimony (Sb)   | ALL SULL ND SULL SULL | 0.01         | 0.04            |  |
| Chromium (Cr)   | 0.02                  | 0.02         | 0.25            |  |
| Cobalt (Co)     | I ND ND               | 0.01         | 0.02            |  |
| Copper (Cu)     | ND                    | 0.1          | 4'              |  |
| Iron (Fe)       | 0.2                   | 0.2          | 40              |  |
| Manganese (Mn)  | THE TOND THE MINIS    | 0.1          | 1.8             |  |
| Molybdenum (Mo) | ND                    | 0.01         | 0.12            |  |
| Nickel (Ni)     | ND ND                 | 0.01         | 0.14            |  |
| Silver (Ag)     | ND                    | 0.01         | 0.08            |  |
| Tin (Sn)        | IND W                 | 0.1          | 100             |  |
| Vanadium (V)    | L THE ND THE WAY      | 0.005        | 0.01            |  |
| Zinc (Zn)       | ND                    | 0.1          | Intill up 5 mil |  |
| Arsenic (As)    | ND                    | 0.001        | 0.002           |  |
| Barium (Ba)     | ND                    | 0.1          | 1.2             |  |
| Beryllium (Be)  | ND                    | 0.005        | 0.01            |  |
| Cadmium (Cd)    | ND ND                 | 0.001        | 0.005           |  |
| Lead (Pb)       | -m ND                 | 0.005        | 0.01            |  |
| Lithium (Li)    | ND IN IN              | 0.005        | 0.048           |  |
| Mercury (Hg)    | ND ND                 | 0.001        | 0.003           |  |
| Thallium (TI)   | ND ND                 | 0.0001       | 0.0001          |  |
| Magnesium (Mg)  | ND ND                 | 0.1          | 10, 0,          |  |
| Titanium (Ti)   | ND ND                 |              | EK NITE TOTAL   |  |

- 1. Test Method: With reference to BS EN 13130-1: 2004, analysis was performed by ICP-OES and ICP-MS
- 2. Test Condition and simulant: Sample(s) were migrated with 5g/L citric acid at 70°C for 2 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. "--" = Not regulated
- 7. The specification was quoted from Technical Guide on Metals and alloys used in food contact materials of Council of Europe Resolution CM/Res(2013)9.





# Sample Photo:



# Photograph of parts tested:

| No.    | Photo of testing part                        | Parts Description    | Client Claimed Material |
|--------|----------------------------------------------|----------------------|-------------------------|
| ek whi | 30                                           | anti unti uni .      | TEX WITER WITER MUTE    |
| 1      |                                              | Black plastic        | Whitek Stek Whitek      |
|        |                                              | Whitek Whitek Whitek | WHITE WHITE WAITE W     |
| T. UIL | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | LIER INLIER WHITER   | THE MULL MULL MULL      |



Reference No.: WTF21F11126219X1F

Page 16 of 16

| No. | Photo of testing part                                         | Parts Description           | Client Claimed Material |
|-----|---------------------------------------------------------------|-----------------------------|-------------------------|
| 2   | 1 2 3 4 5 6 7 8 9 10 11 12                                    | Transparent silicone rubber | Silicone rubber         |
| 3   | 2, 5 c r s o 10 u u u u 15 u u u 20 u u u 25 x u u 20 u u u u | Silvery metal               | SUS304                  |

===== End of Report =====