

TEST REPORT

Report No. : WTF22F05093115F

Applicant..... : Mid Ocean Brands B.V.

Address : 7/F., Kings Tower, 111 King Lam Street, Cheung Sha

Wan, Kowloon, Hong Kong

Manufacturer 114276

Sample Name : Double wall bottle with cork

Sample Model: MO6313

Test Requested : 1. In accordance with Regulation (EU) No 10/2011 with

amendments, Council of Europe Resolution CM/Res(2013)9, Council of Europe Resolution AP(2004)5and Regulation (EC) No 1935/2004.

2. In accordance with French Décret n°2007-766 with

amendments and Regulation (EC) No 1935/2004.

Pass (Please refer to next pages for details)

Date of Receipt sample 2022-05-12

Test Conclusion:

Testing period : 2022-05-12 to 2022-05-26

Date of Issue : 2022-05-26

Test Result.....: Refer to next page (s)

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Signed for and on behalf of Waltek Testing Group (Foshan) Co., Ltd.

Jessise Liu

Jessise.Liu

Test Results:

1. Overall Migration Test

at at	TEX STEX NO	Result (mg/dm ²)			V 24	at at
Food Simulant	Test Condition	No.1		LOQ	Limit	
NUTER MUTER M	TEK WITER WITE	1 st Migration	2 nd Migration	3 rd Migration	(mg/dm ²)	(mg/dm ²)
10% Ethanol	100°C for 6 hours	ND	ND	ND	3 (6)	10

Note:

- 1. Test method: With reference to BS EN 1186-1: 2002, BS EN 1186-3: 2002 and BS EN 1186-14: 2002.
- 2. "mg/dm2" = milligram per square decimetre
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752, (EU)2019/37 and (EU) 2020/1245.

Food Simulant	Toot Condition	Result (mg/kg)		Limit (may/ka)	
Food Simulant	Test Condition	No.1	LOQ(mg/kg)	Limit (mg/kg)	
10% Ethanol	100°C for 6 hours	ND ND	20 0	60	

- 1. Test method: With reference to BS EN 1186-1: 2002, BS EN 1186-3: 2002 and BS EN 1186-14: 2002.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from Council of Europe Resolution AP (2004)5 and French Arrêté du 25 novembre 1992 for Silicone Elastomers.

2. Specific Migration of heavy metal

	Result(mg/kg)			MITER WALTER	White whi	
Test Items	ALTER WALTE	No.1	- 10	LOQ (mg/kg)	Limit (mg/kg)	
and the ites of the			3 rd Migration		(g,g)	
Specific migration of Nickel	ND	ND ND	ND	0.01	0.02	
Specific migration of Aluminium	ND	ND	ND	0.1	F milt mil	
Specific migration of Barium	ND	ND	ND	0.1	11 A	
Specific migration of Cobalt	ND	ND	ND	0.01	0.05	
Specific migration of Copper	ND	ND	ND	0.1	5.7E	
Specific migration of Iron	ND	ND ND	ND	0.1	48	
Specific migration of Lithium	ND	ND	ND ND	0.01	0.6	
Specific migration of Manganese	ND	ND	ND	0.01	0.6	
Specific migration of Zinc	ND	ND	ND	0.1	6 5 St	
Specific migration of Antimony	ND -	ND	ND	0.01	0.04	
Specific migration of Arsenic	ND	ND	ND	0.01	Not detected	
Specific migration of Cadmium	ND	ND	ND	0.002	Not detected	
Specific migration of Chromium	ND	ND	ND	0.01	Not detected	
Specific migration of Mercury	ND	ND	ND ND	0.01	Not detected	
Specific migration of Lead	ND	ND	ND	0.01	Not detected	
Specific migration of Europeum	ND ND	ND ND	ND	0.02	7 Y	
Specific migration of Gadolinium	ND	ND OF	ND	0.02	Cyntre yn	
Specific migration of Lanthanum	ND	ND	ND	0.02	Sum<0.05	
Specific migration of Terbium	ND	ND	ND	0.02	24, 24	

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 100°C for 6 hours, analysis was performed by ICP-MS.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.

3. Specific Migration of Primary Aromatic Amines

with mir my my	ru F	Result (mg/kg) TEXT 15	ITEK MITEK WILL	MULLE MULL	
Test Item	Mo.1			LOQ (mg/kg)	Limit (mg/kg)	
THE SITES OFFER MITTER	1 st Migration	2 nd Migration	3 rd Migration	and and	TEX STEX S	
Migration of Primary aromatic amines	ND COL	ND	ND	0.002	<0.01mg/kg	

- 1. Test Method: With reference to § 64 LFGB L No. 00.00-6, analysis was performed by UV-visible Spectrometer.
- 2. Test Condition and simulant: 3% acetic acid at 100°C for 6 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.

4. Specific Migration of Primary Aromatic Amines (single substance)*

E WELL MUST MUST ME	24 20	L JEFF	Result(mg/kg	3)	White M	Limit
Test Items	CAS No.	Me	No.1	72°	LOQ	
while who rest notified the	et antiet	1 st Migration	2 nd Migration	3 rd Migration	(mg/kg)	(mg/kg)
2-methoxyaniline	90-04-0	ND	ND	ND	0.002	ND
4,4'-Diaminobiphenyl	92-87-5	ND	ND	ND	0.002	ND
4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	ND	ND	ND	0.002	ND
4,4'-Diaminodiphenylmethane	101-77-9	ND	ND	ND O	0.002	ND
4,4'-Oxydianiline	101-80-4	ND	ND	ND	0.002	ND
4-chloroaniline	106-47-8	ND	ND	ND	0.002	ND
3,3'-Dimethoxybenzidine	119-90-4	ND W	ND	ND	0.002	ND
3,3'-Dimethylbenzidine	119-93-7	ND S	ND	ND	0.002	ND
2-Methoxy-5-methylaniline	120-71-8	ND	ND	ND (0.002	ND
2,4,5 – Trimethylaniline	137-17-7	ND	ND ND	ND	0.002	ND
4,4'-Thiodianiline	139-65-1	ND	ND S	ND	0.002	ND
4-aminoazobenzene	60-09-3	ND	ND	ND	0.002	ND
2,4-diaminoanisol	615-05-4	ND	ND	ND W	0.002	ND
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND ND	ND	ND	0.002	ND
2-Naphthylamine	91-59-8	ND	ND	ND +	0.002	ND
3,3'-Dichlorobenzidine	91-94-1	ND	ND N	ND	0.002	ND
4-Aminobiphenyl	92-67-1	ND	ND O	ND	0.002	ND
2-methylaniline	95-53-4	ND ND	ND	ND	0.002	ND
4-chloro-o-Toluidine	95-69-2	ND	ND	ND N	0.002	ND
2,4-Toluylendiamine	95-80-7	ND	ND	ND	0.002	ND
2,4-Aminoazotoluene	97-56-3	ND	ND M	ND	0.002	ND
2-Amino-4-nitrotoluene	99-55-8	ND	ND	ND	0.002	ND
2,4-Xylidin	95-68-1	ND	ND	ND	0.002	ND
2,6-Xylidin	87-62-7	ND	ND	ND	0.002	ND
1, 3 - phenylene diamine	108-45-2	ND	ND	ND	0.002	ND

- 1. Test Method: With reference to EN 13130-1:2004, analysis was performed by LC-MS-MS.
- 2. Test Condition and simulant: 3% acetic acid at 100°C for 6 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.
- 7. The testing item marked with '*' does not been accredited by CNAS.

5. Council of Europe Resolution CM/Res(2013)9-Specific Migration of Heavy Metal

Test Items	1st+2nd Migration (mg/kg)	LOQ (mg/kg)	Limit (mg/kg)	
restitems	No.2	LOQ (mg/kg)		
Aluminium (Al)	ND A	0.2	35	
Antimony (Sb)	ND ND	0.02	0.28	
Chromium (Cr)	A ND A STATE OF	0.04	1.75	
Cobalt (Co)	ND	0.02	0.14	
Copper (Cu)	ND ND	0.2	28	
Iron (Fe)	ND	0.4	280	
Manganese (Mn)	ND ND	0.2	12.6	
Molybdenum (Mo)	Et TEL ND, Et MILTER	0.02	0.84	
Nickel (Ni)	ND	0.02	0.98	
Silver (Ag)	LIFE METER MO METER A	0.02	0.56	
Tin (Sn)	ND +	0.2	700	
Vanadium (V)	NO NO NO	0.01	0.07	
Zinc (Zn)	ND At NO	0.2	35	
Arsenic (As)	ND	0.002	0.014	
Barium (Ba)	ND ND	0.2	8.4	
Beryllium (Be)	ND	0.01	0.07	
Cadmium (Cd)	TE WILL MUND MILL IN	0.002	0.035	
Lead (Pb)	, ND	0.01	0.07	
Lithium (Li)	ND	0.01	0.336	
Mercury (Hg)	ND ND	0.002	0.021	
Thallium (TI)	ND	0.0002	0.0007	
Magnesium (Mg)	ND NN	0.2	et tet tet	
Titanium (Ti)	A ND	0.02	14. 14.	

t farmati	3rd Migration (mg/kg)	100 (===//-=)	Limit (mg/kg)	
Test Items	No.2	LOQ (mg/kg)		
Aluminium (Al)	WELL NO NEW TOWN	0.1	5	
Antimony (Sb)	THE THE ND THE STATE	0.01	0.04	
Chromium (Cr)	ND	0.02	0.25	
Cobalt (Co)	ND while	0.01	0.02	
Copper (Cu)	ND	0.1	4	
Iron (Fe)	MIND WITH A	0.2	40	
Manganese (Mn)	TEL TEND THE MINIS	0.1	1.8	
Molybdenum (Mo)	ND	0.01	0.12	
Nickel (Ni)	ND W	0.01	0.14	
Silver (Ag)	ND	0.01	0.08	
Tin (Sn)	I WILL MUD WELL	0.1	100	
Vanadium (V)	L THE UND THE WAY	0.005	0.01	
Zinc (Zn)	ND	0.1	merita no 5 mil	
Arsenic (As)	ND	0.001	0.002	
Barium (Ba)	ND	0.1	1.2	
Beryllium (Be)	ND	0.005	0.01	
Cadmium (Cd)	ND WITE WA	0.001	0.005	
Lead (Pb)	ND ND	0.005	0.01	
Lithium (Li)	THE NO. IN THE	0.005	0.048	
Mercury (Hg)	ND ND	0.001	0.003	
Thallium (TI)	ND ND	0.0001	0.0001	
Magnesium (Mg)	ND ND	1. 0.1 m	201 - 20	
Titanium (Ti)	ND ND	0.01	EK NITER TRITE	

- 1. Test Method: With reference to BS EN 13130-1: 2004, analysis was performed by ICP-MS.
- 2. Test Condition and simulant: Sample(s) were migrated with artificial tap water at 100°C for 6 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. "--" = Not regulated
- 7. The specification was quoted from Technical Guide on Metals and alloys used in food contact materials of Council of Europe Resolution CM/Res(2013)9.

6. Peroxide Value Test*

Tool Hom	Result	EL MALTER WALL WALL WALL
Test Item	No.3	Limit
Peroxide Value	Absent	Absent

Note:

- 1. Test method: With reference to French pharmacopoeia Xth edition.
- 2. The specification was quoted from French Arrêté du 25 novembre 1992 for Silicone Elastomers.
- 3. The testing item marked with '*' does not been accredited by CNAS.

7. Volatile Organic Compounds

Took Home	Toot Condition			Limit (0/)
Test Item	Test Condition	No.3	LOQ (%)	Limit (%)
Volatile Organic compounds	200°C for 4 hours	0.21	0.05	0.5

Note:

- 1. Test method: With reference to French Arrêté du 25 novembre 1992 Annex III for silicone Elastomers.
- 2. "%" = percentage by weight
- 3. LOQ = Limit of quantitation
- 4. The specification was quoted from French Arrêté du 25 novembre 1992 for Silicone Elastomers.

8. Specific Migration of Organotin (as Tin)

or operation in gre	tion of organism (as i	/		100	
Food Simulant	Test Condition —	Result (mg/kg)	1 00 (mg/kg)	Limit (ma/ka)	
Food Simulant	Test Condition	No.3	LOQ (mg/kg)	Limit (mg/kg)	
3% acetic acid	100°C for 6 hours	ND	0.01	5 O.1	

- 1. Test Method: With reference to BS EN 13130-1: 2004, analysis was performed by ICP-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected, less than LOQ
- 5. The specification was quoted from French Arrêté du 25 novembre 1992 for Silicone Elastomers.

9. Bisphenol A Content*

Test Item	Result (mg/kg)	LOQ (mg/kg)	Limit (mg/kg)
E- alter mitter white white	No.3		
Bisphenol A	ND ND	0.1	Not Detected

Note:

- 1. Test Method: With reference to EPA3550C:2007, analysis was performed by GC-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from Law No 2012-1442.
- 6. The testing item marked with '*' does not been accredited by CNAS.

Sample Photo:

No.	Photo of testing part	Parts Description	Client Claimed Material
white was a superior white white was a superior with the superior was a superior was a superior was a superior with the superior was a superior with the superior was a sup	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Black plastic	Whitek wh
EL 2 OF	5 - 5 - 7 - 10 u u u 15 u u u u 20 u u u 25 x u x x 30 u u u u 35 x	Silvery metal	Stainless steel
TEK 3 WILLER	1 2 3 4 5 6 7 8 9 1 0 11 12 13 14	Transparent silicone rubber	Silicone rubber

Remarks:

- 1. The results shown in this test report refer only to the sample(s) tested;
- 2. This test report cannot be reproduced, except in full, without prior written permission of the company;
- 3. The report would be invalid without specific stamp of test institute and the signatures of compiler and
- 4. The Applicant name and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which Waltek hasn't verified;
- 5. If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.

===== End of Report ======